
adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Development, Implementation and Optimization of Real

Time Target Tracking Algorithms on BeagleBoard-xM

Srikanth A
1

1Research Associate, Department of Research and Development

Nitte Meenakshi Institute of Technology, Yalahanka, Bangalore, Karnataka, India

sria91@gmail.com

Abstract. This work discusses the development and realization of intelligent

computer vision based target tracking algorithms on the BeagleBoard-xM ARM

based embedded platform, which tracks moving targets in a continuous scene

operating in real-time. The integration level of embedded platform is given a

very high significance throughout the design. Combining the embedded plat-

form with target tracking, have many end uses especially in robotics, surveil-

lance, human-computer interaction applications, etc. The results of the imple-

mentation on BeagleBoard-xM are compared with the implementation on an In-

tel Core i3 platform.

Keywords: Embedded Computer Vision, Correlation based Target Tracking,

ARM, BeagleBoard-xM, Linux

1 Introduction

In recent years the technique of moving target detection and tracking is increasingly

becoming more and more popular and has rapidly developed into a very important

prospect in the field of computer vision.

The basic idea of tracking target is to register image from definition. Image regis-

tration [6] is the process of overlaying images (two or more) of the same scene taken

at different times, from different viewpoints, and/or by different sensors. Registration

aligns two images – the template and search frame, the template is searched in the

search frame using best suitable algorithm. In the literature [7] makes use of Beagle-

Board-xM as the embedded platform. Background subtraction technique is made use

of to detect the moving object. A color histogram is computed using the HSV model

and Bhattacharya distance is used for similarity measurement. They have not utilized

all the available resources of the BeagleBoard-xM including the DSP. The algorithm

runs at 400ms per frame. [8] uses an ARM9 based S3C2440 chip as the core proces-

sor. They use a segmentation approach for moving target detection. The tracking is

accomplished by using the Mean-Shift algorithm. They could achieve an execution

time of 100ms.

Our work contributes to this line by providing a brief review of some of the image

registration algorithms applied to target tracking, implementing and analyzing their

performance using a suitable image processing hardware. The performance of the

algorithms implemented on the BeagleBoard-xM is also compared with the imple-

mentation on an Intel Core i3 platform.

2 System Overview

Vision often uses complex, computationally demanding algorithms; implementing

these under severe cost, size, and energy constraints requires selecting the right pro-

cessor for the job and requires to optimize algorithm implementations for the selected

processor. The previous object tracking systems are mostly built using general pur-

pose desktop PC or Laptop, which is inadequate to meet the demands of real-time

computation and miniaturization. In contrast, an embedded system has limited pro-

cessing power and limited memory resources. The performance can be improved by

selecting the proper mobile processor in addition to an environment having different

on-chip resources.

Low-power ARM based embedded system-on-chips (SoCs) combine various co-

processors including a Vectorized Floating Point Unit (FPU), a Graphics Processing

Unit (GPU) and a Digital Signal Processor (DSP) on a single chip. In the literature [7-

8], they have been successfully used to realize tracking algorithms on hardware.

Hence, they can be an ideal solution for implementing computer vision based algo-

rithms such as Target Tracking. The embedded platform which has been selected for

the study is BeagleBoard-xM [1]. The results are also compared with that of an Intel

PC platform.

2.1 Embedded Platform

The BeagleBoard-xM [1] is a low-cost, low power, fan-less open source hardware

single board computer produced by Texas Instrument in association with Digi-Key.

BeagleBoard-xM is the modified version of BeagleBoard which has faster CPU core

(clocked at 1GHz compared to 720MHz) and more RAM (512 MiB compare to 256

MiB). The BeagleBoard-xM was designed with open source development in mind and

as a way of demonstrating the Texas Instruments DM3730 system-on-a-chip.

The board uses up to 2 W of power and because of the low power consumption, no

additional cooling and heat sinks are required. By eliminating all of the on-board

peripherals and by providing standard expansion buses like high-speed USB 2.0,

Ethernet port and HDMI port, developers and researchers can bring their own periph-

erals and expand the board ability what they want. It has been equipped with a mini-

mum set of features to allow the user to experience the power of the processor.

Fig. 1. BeagleBoard-xM

2.2 Intel Platform

The Target Tracking algorithms are implemented on an Intel Core i3 M 350 Laptop

running Windows 7. The system is clocked at 2.27 GHz, having 3 GB of RAM. Visu-

al Studio is used as the development environment. The algorithms are written in

standard C++ and the compared metrics are recorded.

2.3 Simple DirectMedia Layer (SDL)

Simple DirectMedia Layer is a cross-platform free and open source multimedia li-

brary designed to provide simpler low level access to audio, keyboard, mouse, joy-

stick, graphics devices. SDL has the word "layer" in its title because it is actually a

wrapper around operating-system-specific functions. The main purpose of SDL is to

provide a common framework for accessing these functions. SDL has been used be-

fore to write computer games and other multimedia applications that run on many

operating systems.

2.4 GStreamer

GStreamer is a pipeline-based multimedia framework written in C with type system

based on GObject. GStreamer allows a programmer to create a variety of media-

handling components, including simple audio playback, audio and video playback,

recording, streaming and editing. The pipeline design serves as a base to create many

types of multimedia applications such as video editors, streaming media broadcasters

and media players.

2.5 Digital Video Software Development Kit (DVSDK)

DVSDK is a set of software and data for development targeting for misc TI proces-

sors. DVSDK enable DaVinci system integrators to quickly develop Linux-based

multimedia applications.

3 Target Tracking

The general approach for tracking using data from imaging sensors (camera) is as

follows. The target to be tracked is first specified by a human operator. An image

registration algorithm then searches for the target in each subsequent image obtained

by the imaging sensor. The measurement resulting from the image registration algo-

rithm is used to find the position of the target. The key issues in image registration are

the time required for registration and the accuracy of registration, i.e., the measure of

how close is the match between sub image in the search space and the reference im-

age.

Image Registration is a process, which finds the location where optimal matching

is obtained by matching a template image called the reference image over the search-

ing region of an input image using a suitable similarity measures. The method alt-

hough computationally intensive, is simple, straightforward and robust and requires

no a priori information about the two images.

3.1 Search Strategies

Fine Search. In fine search strategy, registration starts at the top left corner of the

search space and continues along each row and column moving the sub image by one

pixel each time. The whole search image will be evaluated in this method. The accu-

racy of registration algorithm using fine search is good but the computation time is

large.

Coarse – to – Fine Search. In coarse-fine search strategy, registration is done by

extracting sub images of equal size as that of the reference image at the start of search

space on a coarse grid at every n¬th point. An approximate match point is found at the

end of this step. A full search is done in a local region surrounding this match point. A

coarse-fine search strategy is efficient if the system allows a minor degradation in

accuracy.

Around the Object Fine Search. In this search strategy, the fine search is performed

around the area of selected template.

Among these the fine search is more efficient but it is time-consuming. Coarse-fine

search is moderately efficient and consumes lesser time for each frame. Fine search

around the object is efficient only when the object stays within a certain boundary-

limited window around the matched position of the previous frame but the time con-

sumed is greatly reduced and hence has been explored in this work.

Following algorithms have been studied which are based on similarity measure

(correlation) between the reference image and search space. Correlation Coefficient is

the classical representative of the area-based methods. It matches directly image in-

tensities, without any structural analysis. They are sensitive to the intensity changes,

introduced by noise, varying illumination, and/or by using different sensor types.

1. Pearson Correlation Coefficient [9].

2. Spearman Correlation Coefficient [10].

3. Cross Correlation (CC) [11].

4. Normalized Cross Correlation (NCC) [12] and [13].

5. Normalized Area Correlation Metric (NACM).

6. Cross Sectional Histogram Correlation (CHC) [14].

4 Overview of the Tracking System

The embedded target tracking system (Fig 2) based on BeagleBoard-xM consists of

four different modules: Image Acquisition module, Pre-processing module, Tracking

module and the Display and User Interface module.

4.1 Image Acquisition Module

The images are acquired from a live camera feed or a stored video file (used for test-

ing) at 320 x 240 pixels and 30 fps. The camera gets connected to the BeagleBoard-

xM via one of its USB ports. GStreamer [2] multimedia framework has been used in

order to access the frames from the image source. The GStreamer framework provides

a unified way of accessing the V4L2 camera and the stored video by setting up a

proper pipeline. This forms the image acquisition module.

4.2 Pre-processing Module

In order to reduce the computation required for processing each frame, the input im-

age sequence is converted into grayscale by the preprocessing module.

4.3 Display and User Interface Module

Input frames acquired are continuously displayed on a display system attached to the

board. The tracking is initiated by the user through a mouse click on any part of the

input image being displayed. A template is extracted around the clicked co-ordinate

and is used as reference for the tracking module. The tracked target is also annotated

on the displayed image by a colored rectangle. Simple DirectMedia Layer (SDL) [3]

is used to implement this module due to it being simple and light on resources which

is essential in any embedded system. The SDL framework also provides the capability

for handling keyboard and mouse events.

Fig. 2. Block diagram of the Target Tracking System.

4.4 Tracking Module

The tracking module performs the actual work of continuously matching the reference

template with the portions of the input frames using the fine search around-the-object

approach discussed in the last section. The tracking module exploits the DSP core

(TI’s TMS320C64x+) onboard the BeagleBoard-xM to offload the computationally

intensive task of evaluating the correlation between the reference template and the

search sub-images of the input frame in order to obtain the best match for the 2D

target position. C6Accel [4] framework has been used to develop the DSP kernels for

all the tracking algorithms discussed. Fig 3 shows the overview of the C6Accel

framework.

Fig. 3. The interface between the ARM and the DSP

5 System Setup and Implementation

A minimal version of Angstrom Linux 2011.03 is setup on the BeagleBoard-xM.

Angstrom Linux is chosen as it has good support for DSP development using the

C6Accel framework. It also allows for high performance by utilizing the complete

1GHz clock frequency of the board and provides with a stable kernel. The customized

software image is generated using Narcissus [5] and installed on the SD card from

which the board boots up. The necessary toolchains (gcc), software libraries (sdl,

gstreamer) along with their development headers and kernel modules (dsplink, cmem,

uvcvideo) are selected to be integrated into the generated image to save the burden of

manual compilation and installation of the same later.

The Digital Video Software Development Kit (DVSDK) from TI is installed on a

32-bit intel PC with Ubuntu 12.10 for accessing the C6Accel framework. C6Accel

framework is used for writing the algorithms as DSP kernel, which gets compiled

using TI CodeGen tools into a DSP side executable. The ARM side wrapper functions

are also written and their static libraries are cross compiled on the PC. The generated

Contiguous

Memory

Allocation

DSP side kernels

ARM side wrappers

Target Tracking Application

libraries are finally linked with the target tracking application on the board. The out-

put of the system can be displayed on a monitor via the DVI-D output. A USB key-

board and a mouse are connected to the system for user input as shown in Fig 4.

Fig. 4. The laboratory setup of Target Tracking System.

The Linux kernel is configured to set aside a part of RAM for shared use by ARM

and the DSP. The CMEM module initializes this block of RAM since the data inter-

changed with the DSP needs to be physically contiguous. On execution the target

tracking application loads the DSP side executable. The target tracking application

allocates the memory in the shared region for the input, reference images as well as

other input and output arguments for the kernel. The application the gives a call to the

DSP side algorithm kernel using the ARM side wrapper function. The whole process

is demonstrated in Fig 3.

6 Pseudocode for CHC Algorithm

CHC(S, m1, n1, T, m, n, xp, yp)

// Inputs

// S = input image

// m1, n1 = input image width and height

// T = reference image

// m, n = reference image width and height

// xp, yp = previous target co-ordinates

// Outputs

// xm, ym = target co-ordinates after matching

// Constants

// Ww = width of search window

// Wh = height of search window

// Algorithm

p = compute row histogram of T (eqn 1)

y = compute col histogram of T (eqn 2)

Tm = compute mean of T (eqn 3)

match_corr = ‘zero’

for x = prev_x - Ww/2 to prev_x + Ww/2

 for y = prev_y - Wh/2 to prev_y + Wh/2

 R = compute row histogram of sub block of S (eqn 4)

 C = compute col histogram of sub block of S (eqn 5)

 Tm = compute mean of sub block of S (eqn 6)

 Lp = compute row correlation between S and T (eqn 7)

 Ly = compute col correlation between S and T (eqn 8)

 corr = compute CHC between S and T (eqn 9)

 if corr > match_corr

 match_corr = corr

 xm = x

 ym = y

 endif

endfor

endfor

Reference row histogram

1

0

1 n

i i,k
k=

p = T
n

 (1)

Reference column histogram

1

0

1 m

j i, j
l=

= T
m

 (2)

Reference mean

 1, 1

0, 0

1
n m

i, j
i= j=

T = T
nxm

 (3)

Input row histogram

1

0

1 n

i y+i,x+k
k=

R = S
n

 (4)

Input column histogram

1

0

1 m

j x+i,y+ j
l=

C = S
m

 (5)

Input mean

 1, 1

0, 0

1
n m

x+i,y+ j
i= j=

S = S
nxm

 (6)

Row correlation

1

0

1 12 2

0 0

m

i i

i=

m m

i i

i= i=

p T R S

=

p T R S

 (7)

Column correlation

1

0

1 12 2

0 0

n

j j

j=

n n

j j

j= j=

T C S

=

T C S

 (8)

Cross Sectional Histogram Correlation 2 2,x y (9)

7 Results and Discussion

The execution times for the algorithms on BeagleBoard-xM (without and with the

DSP) and on Intel Core i3 platform are compared in Table 1. The snapshots of the

result along with the metrics used for comparison are available in Table 2–5.

The performance of the algorithms on BeagleBoard-xM platform is improved up to

5 times through optimization when compared to an Intel platform though the algo-

rithms still don’t operate in real-time. The performance is further improved 2.3 to 4.6

times by utilizing the computing power of the onboard DSP core and nearly all the

algorithms have met the requirements of real-time. The comparatively lower perfor-

mance of the CHC is justified by the necessity for computation of the histogram for

each sub-image.

Table 1. Comparison of execution time for different algorithms.

Algorithm Name Execution time in millisecond

 Intel Core i3 BeagleBoard-xM

ARM

(Unoptimized)

ARM

(Optimized)

DSP

(Optimized)

PEARSON 80 256 56 21

SPEARMAN 210 154 42 9

CC 115 204 50 19

NCC 160 334 45 19

NACM 190 754 81 25

CHC 110 1580 130 94

Acknowledgements. The author expresses their sincere gratitude to Prof N R Shetty,

Director, Nitte Meenakshi Institute of Technology; Dr H C Nagaraj, Principal, Nitte

Meenakshi Institute of Technology and Dr Jharna Majumdar, Former Scientist ‘G’

DRDO, Dean R&D, Prof & Head, Department of CSE (PG), Nitte Meenakshi Insti-

tute of Technology for providing the support, encouragement and infrastructure to

carry out the research. The author would like to thank Mr Venkatesh G M, Research

Associate, Nitte Meenakshi Institute of Technology for generating the results on the

Intel platform and providing for the comparison. The author would also like to

acknowledge the Robotics Team of Nitte Meenakshi Institute of Technology for their

support.

References

1. BeagleBoard-xM Rev C System Reference Manual, http://www.beagleboard.org

2. GStreamer Manual, http://www.gstreamer.net

3. Simple DirectMedia Layer (SDL) Tutorials, http://www.libsdl.org

4. C6Accel Advanced Users Guide,

http://processors.wiki.ti.com/index.php?title=C6Accel_Advanced_Users_Guide

5. Narcissus, http://narcissus.angstrom-distribution.org

6. Zitova B., Flusser J.: Image registration methods: a survey. In: Image and Vision Compu-

ting 21, pp. 977-1000. Elsevier (2003)

7. Khang S., Yap V.V., Sebastian P.: Implementation and Optimization of Human Tracking

System using ARM Embedded Platform. In: 4th International Conference on Intelligent

and Advanced Systems, Vol 1, pp. 353-356. (2012)

8. Pan L., Liu X.: The Study of Target Tracking Based on ARM Embedded Platform. In:

Journal of Computers, Vol 7, No 8, pp. 2015-2023, (2012)

9. Soares F., Affonso L., Diego.: Application of Fourier Descriptors and Pearson Correlation

for Fault Detection in Sucker Rod Pumping System. In: IEEE Conference on Emerging

Technologies and Factory Automation. (2009)

10. Liu D., Yeung S., Sun D.M., Qiu Z.D.: A Spearman Correlation Coefficient Ranking for

Matching-score Fusion on Speaker Recognition. In: IEEE Region 10 Conference (2010)

11. Didon J.P., Langevin F.: Registration of MR Images: From 2D to 3D, using a Projection

Based Cross Correlation Method. In: 17th IEEE Annual Conference on Engineering in

Medicine and Biology Society. (1995)

12. Bunting P., Lucas R., Labrose F.: An Area Based technique for Image-to-Image registra-

tion of Multi-Modal remote sensing data. In: IEEE International Geoscience and Remote

Sensing Symposium. (2008)

13. Patnaik S., Bombaywala S., Sarvaiah J.N.: Image Registration by template matching using

Normalized Cross-Correlation. In: International Conference on Advances in Computing,

Control and Telecommunication Technologies. (2009)

14. Takei R.: A New Grey-Scale Template Image Matching Algorithm using the Cross-

Sectional Histogram Correlation Method. (2003)

http://www.beagleboard.org/
http://www.gstreamer.net/
http://www.libsdl.org/
http://processors.wiki.ti.com/index.php?title=C6Accel_Advanced_Users_Guide
http://narcissus.angstrom-distribution.org/

Table 2. Results of the different tracking algorithms on test video 1

Frame ID 1 11 21

Input

Frames

Output

Frames

PEARSON (201,148)1 [.6397]2 (213,132) [.7081] (218,154) [.5045]

SPEARMAN (201,150) [.9990] (213,142) [.9998] (217,161) [.9900]

CC (201,150) [.9490] (213,142) [.9542] (217,161) [.9347]

NCC (201,148) [.8251] (213,132) [.7697] (217,151) [.7181]

NACM (201,150) [.7932] (213,142) [.8156] (217,161) [.7312]

CHC (201,148) [.9781] (213,133) [.9605] (218,151) [.9682]

Table 3. Results of the different tracking algorithms on test video 2

Frame ID 1 11 21

Input

Frames

Output

Frames

PEARSON (22,94) [.7305] (22,94) [.7022] (33,95) [.6079]

SPEARMAN (22,94) [.9999] (22,94) [.9980] (33,95) [.9997]

CC (22,94) [.9992] (22,94) [.9771] (33,95) [.9506]

NCC (22,94) [.9663] (22,94) [.9383] (33,95) [.9216]

NACM (22,94) [.9983] (22,94) [.9520] (33,95) [.8971]

CHC (22,94) [.9976] (22,94) [.9961] (33,95) [.9923]

1 Target location in pixel co-ordinates (x, y)
2 Correlation value of the match

Table 4. Results of the different tracking algorithms on test video 3

Frame ID 1 11 21

Input

Frames

Output

Frames

PEARSON (154,91) [.4047] (176,100) [.3232] (181,96) [.3670]

SPEARMAN (154,91) [.9994] (177,100) [.9986] (181,96) [.9981]

CC (154,91) [.9072] (177,100) [.8251] (181,96) [.8065]

NCC (154,91) [.7937] (177,100) [.5984] (181,96) [.5577]

NACM (154,91) [.7937] (177,100) [.5984] (181,96) [.5577]

CHC (154,89) [.9430] (178,100) [.9315] (181,95) [.9145]

Table 5. Results of the different tracking algorithms on test video 4

Frame ID 1 11 21

Input

Frames

Output

Frames

PEARSON (173,94) [.7770] (178,100) [.5525] (172,98) [.5473]

SPEARMAN (174,93) [.9997] (178,100) [.9989] (172,98) [.9986]

CC (174,93) [.9800] (178,100) [.9275] (172,98) [.9195]

NCC (173,94) [.9032] (178,100) [.6221] (172,98) [.5858]

NACM (174,93) [.9032] (178,100) [.6221] (172,98) [.5858]

CHC (174,93) [.9960] (178,96) [.9777] (171,94) [.9819]

